Complex Networks Postdoctoral Researcher
Researching temporal networks, reachability properties, spreading processes, and decentralised federated learning. Currently working on distributed, explainable AI systems at the National Research Council, Italy.
I am a Complex Networks postdoctoral researcher currently at the National Research Council, Italy. I successfully defended my doctor of science thesis at Aalto University, Finland in December 2022 on reachability and spreading processes on temporal networks.
My work spans temporal networks, their reachability properties and associated critical behaviour, as well as decentralised machine learning and computational social science problems. I'm comfortable developing analytical understanding of networks while designing and performing large-scale simulations of network dynamics in high-performance computing environments.
Currently, I'm participating in the "Social eXplainable Artificial Intelligence" project, analyzing the effects of real-world temporal and structural heterogeneities on the efficacy of distributed machine learning systems.
Developing efficient methods for estimating limited waiting-time reachability on temporal networks. I showed that reachability phase transitions in temporal networks are in the directed percolation universality class and provided frameworks for analyzing reachability in empirical networks.
Analyzing and optimizing decentralised federated machine learning models through complex networks lens. Developed novel neural network initialization approaches based on eigenvector centralities to significantly improve efficacy.
Working on polarisation and misinformation in online social media, experimental design in crowdsourcing, and large-scale text and conversation flow analysis.
Created open-source software library "Reticula" with implementations of static, temporal, and temporal hypergraph network algorithms. Available in modern C++ with Python bindings for research community use.
Narimanzadeh, H., Badie-Modiri, A., Smirnova, I., & Chen, T. H. Y. (2025)
arXiv preprint • DOI: 10.48550/arXiv.2502.05255
Badie-Modiri, A., Boldrini, C., Valerio, L., Kertész, J., & Karsai, M. (2024)
arXiv preprint (accepted for publication in Applied Network Science) • DOI: 10.48550/arXiv.2403.15855
Narimanzadeh, H., Badie-Modiri, A., Smirnova, I. G., & Chen, T. H. Y. (2023)
Proceedings of the ACM on Human-Computer Interaction, 7(CSCW2), 1-29 • DOI: 10.1145/3610183
Badie-Modiri, A. & Kivelä, M. (2023)
SoftwareX, 21, 101301 • DOI: 10.1016/j.softx.2022.101301
Badie-Modiri, A., Rizi, A. K., Karsai, M., & Kivelä, M. (2022)
Physical Review Research, 4(2), L022047 • DOI: 10.1103/PhysRevResearch.4.L022047
Badie-Modiri, A., Rizi, A. K., Karsai, M., & Kivelä, M. (2022)
Physical Review E, 105(5), 054313 • DOI: 10.1103/PhysRevE.105.054313
Rizi, A. K., Faqeeh, A., Badie-Modiri, A., & Kivelä, M. (2022)
Physical Review E, 105(4), 044313 • DOI: 10.1103/PhysRevE.105.044313
Badie-Modiri, A., Karsai, M., & Kivelä, M. (2020)
Physical Review E, 101(5), 052303 • DOI: 10.1103/PhysRevE.101.052303
Shirazi, A. H., Badie-Modiri, A., Heydari, S., Rohn, J. L., Jafari, G. R., & Mani, A. R. (2016)
PLOS One, 11(12), e0167546 • DOI: 10.1371/journal.pone.0167546
Saramäki, J., Badie-Modiri, A., Rizi, A. K., Kivelä, M., & Karsai, M. (2023)
In Temporal Network Theory (pp. 107-130). Springer • DOI: 10.1007/978-3-031-30399-9_6
Badie-Modiri, A. (2022)
Doctoral thesis, Aalto University • ISBN: 978-952-64-1051-7 • URN:ISBN:978-952-64-1051-7
Badie-Modiri, A. (2018)
Master's thesis, Aalto University • URN:NBN:fi:aalto-201806293772
National Research Council, Italy
Aalto University, Finland